Achieving net-zero in the dry eye disease care pathway

  • Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, et al. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. Lancet. 2022;400:1619–54.

    Article 
    PubMed 

    Google Scholar 

  • The United Nations. For a livable climate: Net-zero commitments must be backed by credible action. 2022. https://www.un.org/en/climatechange/net-zero-coalition.

  • NHS England. Delivering a net zero NHS. 2022. https://www.england.nhs.uk/greenernhs/a-net-zero-nhs/.

  • Watts N, Bailie P, Boycott K, Braithwaite I, Cosford P, Daniel J, et al. Delivering a ‘Net Zero’ National Health Service. 2020. https://www.england.nhs.uk/greenernhs/wp-content/uploads/sites/51/2020/10/delivering-a-net-zero-national-health-service.pdf.

  • GOV.UK. UK health services make landmark pledge to achieve net zero. 2021. https://www.gov.uk/government/news/uk-health-services-make-landmark-pledge-to-achieve-net-zero.

  • The Royal College of Ophthalmologists. New RCOphth Workforce Census illustrates the severe shortage of eye doctors in the UK. 2019. https://www.rcophth.ac.uk/news-views/new-rcophth-workforce-census-illustrates-the-severe-shortage-of-eye-doctors-in-the-uk/.

  • Somner J, Scott K, Morris D, Gaskell A, Shepherd I. Ophthalmology carbon footprint: something to be considered? J Cataract Refract Surg. 2009;35:202–3.

    Article 
    PubMed 

    Google Scholar 

  • Morris DS, Wright T, Somner JE, Connor A. The carbon footprint of cataract surgery. Eye. 2013;27:495–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goel H, Wemyss TA, Harris T, Steinbach I, Stancliffe R, Cassels-Brown A, et al. Improving productivity, costs and environmental impact in International Eye Health Services: using the ‘Eyefficiency’ cataract surgical services auditing tool to assess the value of cataract surgical services. BMJ Open Ophthalmol. 2021;6:e000642.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khor HG, Cho I, Lee K, Chieng LL. Waste production from phacoemulsification surgery. J Cataract Refract Surg. 2020;46:215–21.

    Article 
    PubMed 

    Google Scholar 

  • Tauber J, Chinwuba I, Kleyn D, Rothschild M, Kahn J, Thiel CL. Quantification of the cost and potential environmental effects of unused pharmaceutical products in cataract surgery. JAMA Ophthalmol. 2019;137:1156–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thiel CL, Schehlein E, Ravilla T, Ravindran RD, Robin AL, Saeedi OJ, et al. Cataract surgery and environmental sustainability: Waste and lifecycle assessment of phacoemulsification at a private healthcare facility. J Cataract Refract Surg. 2017;43:1391–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrero A, Thouvenin R, Hoogewoud F, Marcireau I, Offret O, Louison P, et al. The carbon footprint of cataract surgery in a French University Hospital. J Fr Ophtalmol. 2022;45:57–64.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Latta M, Shaw C, Gale J. The carbon footprint of cataract surgery in Wellington. N. Z Med J. 2021;134:13–21.

    PubMed 

    Google Scholar 

  • Moussa G, Ch’ng SW, Ziaei H, Jalil A, Park DY, Patton N, et al. The use of fluorinated gases and quantification of carbon emission for common vitreoretinal procedures. Eye (2022). https://doi.org/10.1038/s41433-022-02145-9.

  • Namburar S, Pillai M, Varghese G, Thiel C, Robin AL. Waste generated during glaucoma surgery: A comparison of two global facilities. Am J Ophthalmol Case Rep. 2018;12:87–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chadwick O, Cox A. Response to Tetsumoto et al. regarding the use of fluorinated gases in retinal detachment surgery. The environmental impact of fluorinated gases. Eye. 2021;35:2891.

    Article 
    PubMed 

    Google Scholar 

  • Vo LV, Mastrorilli V, Muto AJ, Emerson GG. Reuse of shipping materials in the intravitreal bevacizumab supply chain: feasibility, cost, and environmental impact. Int J Retin Vitreous. 2023;9:34.

    Article 

    Google Scholar 

  • Buchan JC, Thiel CL, Steyn A, Somner J, Venkatesh R, Burton MJ, et al. Addressing the environmental sustainability of eye health-care delivery: a scoping review. Lancet Planet Health. 2022;6:e524–e534.

    Article 
    PubMed 

    Google Scholar 

  • Wong YL, Noor M, James KL, Aslam TM. Ophthalmology going greener: a narrative review. Ophthalmol Ther. 2021;10:845–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, et al. TFOS DEWS II Epidemiology Report. Ocul Surf. 2017;15:334–65.

    Article 
    PubMed 

    Google Scholar 

  • Papas EB. The global prevalence of dry eye disease: A Bayesian view. Ophthalmic Physiol Opt. 2021;41:1254–66.

    Article 
    PubMed 

    Google Scholar 

  • Alves M, Asbell P, Dogru M, Giannaccare G, Grau A, Gregory D, et al. TFOS Lifestyle Report: Impact of environmental conditions on the ocular surface. Ocul Surf. 2023;29:1–52.

    Article 
    PubMed 

    Google Scholar 

  • Future Market Insights. Dry Eye Syndrome Treatment Market. 2022. https://www.futuremarketinsights.com/reports/dry-eye-syndrome-treatment-market.

  • Vakros G, Scollo P, Hodson J, Murray PI, Rauz S. Anxiety and depression in inflammatory eye disease: exploring the potential impact of topical treatment frequency as a putative psychometric item. BMJ Open Ophthalmol. 2021;6:e000649.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Javidi H, Poonit N, Patel RP, Barry RJ, Rauz S, Murray PI. Adherence to topical medication in patients with inflammatory eye disease. Ocul Immunol Inflamm. 2021;29:890–5.

    Article 
    PubMed 

    Google Scholar 

  • Giannaccare G, Breda JB. For a greener future of ophthalmology. Eye. 2022;36:656–7.

    Article 
    PubMed 

    Google Scholar 

  • Govindasamy G, Lim C, Riau AK, Tong L. Limiting plastic waste in dry eye practice for environmental sustainability. Ocul Surf. 2022;25:87–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Birkhoff M, Marie C Sustainability measures are the key to meeting ESG commitments. 2022. https://ondrugdelivery.com/wp-content/uploads/2022/04/Sustainability-ONdD-AprMay-2022-Issue-132-LoRes.pdf.

  • The Earthshot Prize. Build a waste-free world 2022 winner. 2022. https://earthshotprize.org/winners-finalists/notpla/.

  • Latham K The world’s first ‘infinite’ plastic. 2021. https://www.bbc.com/future/article/20210510-how-to-recycle-any-plastic.

  • Bukowski H, Boleslaw R TerraCycle: A Circular Economy Business Model Case. 2020. http://www.r2piproject.eu/wp-content/uploads/2019/05/TerraCycle-Case-Study.pdf.

  • Janković S Blister pack recycling scheme: ‘We’ve seen an increase in footfall as a result’. 2022. https://www.thepharmacist.co.uk/clinical-ambassadors/healthy-living/blister-pack-recycling-scheme-weve-seen-an-increase-in-footfall-as-a-result/.

  • Recycle Now. Which plastic tubes can’t be recycled? 2022. https://www.recyclenow.com/recycle-an-item/plastic-tubes.

  • Stacey M Aluminium Recyclability and Recycling. 2015. https://international-aluminium.org/wp-content/uploads/2017/12/Aluminium-Recyclability-Recycling-TSC-2.pdf.

  • Recycle Now. How to recycle medicines. 2022. https://www.recyclenow.com/recycle-an-item/medicines.

  • Kaiser K, Schmid M, Schlummer M. Recycling of polymer-based multilayer packaging: a review. Recycling. 2018;3:1.

    Article 

    Google Scholar 

  • Rebulla P, Querol S, Pupella S, Prati D, Delgadillo J, De Angelis V. Recycling apparent waste into biologicals: the case of umbilical cord blood in Italy and Spain. Front Cell Dev Biol. 2022;9:812038.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rauz S, Koay SY, Foot B, Kaye SB, Figueiredo F, Burdon MA, et al. The Royal College of Ophthalmologists guidelines on serum eye drops for the treatment of severe ocular surface disease: full report. Eye (2017). https://doi.org/10.1038/eye.2017.209.

  • Tseng CL, Chen ZY, Renn TY, Hsiao SH, Burnouf T. Solvent/Detergent virally inactivated serum eye drops restore healthy ocular epithelium in a rabbit model of dry-eye syndrome. PLoS One. 2016;11:e0153573.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anitua E, de la Fuente M, Alcalde I, Sanchez C, Merayo-Lloves J, Muruzabal F. Development and optimization of freeze-dried eye drops derived from plasma rich in growth factors technology. Transl Vis Sci Technol. 2020;9:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-García JS, García-Lozano I, Rivas L, Viso-Garrote M, Raposo R, Méndez MT. Lyophilized autologous serum eyedrops: experimental and comparative study. Am J Ophthalmol. 2020;213:260–6.

    Article 
    PubMed 

    Google Scholar 

  • Lemp MA, Crews LA, Bron AJ, Foulks GN, Sullivan BD. Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea. 2012;31:472–8.

    Article 
    PubMed 

    Google Scholar 

  • Loudin JD, Franke M, Hamilton DN, Doraiswamy A, Ackermann DM Contact lens for increasing tear production. US9764150B2 (Patent) 2014.

  • Kim M, Lee Y, Mehra D, Sabater AL, Galor A. Dry eye: why artificial tears are not always the answer. BMJ Open Ophthalmol. 2021;6:e000697.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones L, Downie LE, Korb D, Benitez-Del-Castillo JM, Dana R, Deng SX, et al. TFOS DEWS II Management and Therapy Report. Ocul Surf. 2017;15:575–628.

    Article 
    PubMed 

    Google Scholar 

  • Asim MH, Ijaz M, Rösch AC, Bernkop-Schnürch A. Thiolated cyclodextrins: New perspectives for old excipients. Coord Chem Rev. 2020;420:213433.

    Article 

    Google Scholar 

  • Zhang W, Wang Y, Lee BT, Liu C, Wei G, Lu W. A novel nanoscale-dispersed eye ointment for the treatment of dry eye disease. Nanotechnology. 2014;25:125101.

    Article 
    PubMed 

    Google Scholar 

  • Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci. 2021;288:102342.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sahu DK, Pradhan D, Biswasroy P, Kar B, Ghosh G, Rath G. Recent trends in nanocarrier based approach in the management of dry eye disease. J Drug Deliv Sci Technol. 2021;66:102868.

    Article 
    CAS 

    Google Scholar 

  • Yu Y, Chow DWY, Lau CML, Zhou G, Back W, Xu J, et al. A bioinspired synthetic soft hydrogel for the treatment of dry eye. Bioeng Transl Med. 2021;6:e10227.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev. 2018;126:113–26.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin D, Lei L, Shi S, Li X. Stimulus-responsive hydrogel for ophthalmic drug delivery. Macromol Biosci. 2019;19:e1900001.

    Article 
    PubMed 

    Google Scholar 

  • Wang Q, Zuo Z, Cheung CKC, Leung SSY. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm. 2019;559:86–101.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ow V, Loh XJJ. Recent developments of temperature-responsive polymers for ophthalmic applications. Polym Sci. 2022;60:1429.

    Article 
    CAS 

    Google Scholar 

  • Hendi A, Umair HM, Elsherif M, Alqattan B, Park S, Yetisen AK, et al. Healthcare applications of pH-sensitive hydrogel-based devices: a review. Int J Nanomed. 2020;15:3887–901.

    Article 
    CAS 

    Google Scholar 

  • Rudko M, Urbaniak T, Musiał W. Recent developments in ion-sensitive systems for pharmaceutical applications. Polymers. 2021;13:1641.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Q, Cao Y, Wang P. Recent advances in hydrogels for the diagnosis and treatment of dry eye disease. Gels. 2022;8:816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chouhan G, Moakes RJA, Esmaeili M, Hill LJ, deCogan F, Hardwicke J, et al. A self-healing hydrogel eye drop for the sustained delivery of decorin to prevent corneal scarring. Biomaterials. 2019;210:41–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, et al. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm (2023). https://doi.org/10.1016/j.ijpharm.2023.122740.

  • Thacker M, Singh V, Basu S, Singh S. Biomaterials for dry eye disease treatment: Current overview and future perspectives. Exp Eye Res. 2023;226:109339.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roberts C, Stacey C. Transforming NHS Outpatient Care. 2020. https://www.locsu.co.uk/wp-content/uploads/2020/11/NHSEI-NOC-2020-25112020.pdf.

  • Forbes H, Sutton M, Edgar DF, Lawrenson J, Spencer AF, Fenerty C, et al. Impact of the Manchester glaucoma enhanced referral scheme on NHS costs. BMJ Open Ophthalmol. 2019;4:e000278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gunn PJG, Marks JR, Konstantakopoulou E, Edgar DF, Lawrenson JG, Roberts SA, et al. Clinical effectiveness of the Manchester glaucoma enhanced referral scheme. Br J Ophthalmol. 2019;103:1066–71.

    Article 
    PubMed 

    Google Scholar 

  • Li JO, Liu H, Ting DSJ, Jeon S, Chan RVP, Kim JE, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog Retin Eye Res. 2021;82:100900.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu H, Ying S, Kamat S, Tukel C, Serle J, Fallar R, et al. The role of telemedicine in glaucoma care triggered by the SARS-CoV-2 Pandemic: A qualitative study. Clin Ophthalmol. 2023;17:2251–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sim DA, Mitry D, Alexander P, Mapani A, Goverdhan S, Aslam T, et al. The evolution of teleophthalmology programs in the United Kingdom: Beyond diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10:308–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho CS, Avery AJ, Livingstone IAT, Ting DSJ. Virtual consultation for red eye. BMJ. 2021;373:n1490.

    Article 
    PubMed 

    Google Scholar 

  • Inomata T, Iwagami M, Nakamura M, Shiang T, Yoshimura Y, Fujimoto K, et al. Characteristics and risk factors associated with diagnosed and undiagnosed symptomatic dry eye using a smartphone application. JAMA Ophthalmol. 2020;138:58–68.

    Article 
    PubMed 

    Google Scholar 

  • Choudhury I Going green-how pharmacies can protect the environment. 2022. https://www.inpharmacy.co.uk/2022/03/29/going-green-how-pharmacies-can-protect-environment.

  • Sherry B, Lee S, Ramos Cadena MLA, Laynor G, Patel SR, Simon MD, et al. How ophthalmologists can decarbonize eye care: a review of existing sustainability strategies and steps ophthalmologists can take. Ophthalmology. 2023;130:702–14.

    Article 
    PubMed 

    Google Scholar 

  • Tun S, Wellbery C, Teherani A. Faculty development and partnership with students to integrate sustainable healthcare into health professions education. Med Teach. 2020;42:1112–8.

    Article 
    PubMed 

    Google Scholar 

  • Centre for Sustainable Healthcare. The SusQI Education Project: Putting theory into practice. 2022. https://sustainablehealthcare.org.uk/sustainability-in-quality-improvement-education.

  • Sherman JD, McGain F, Lem M, Mortimer F, Jonas WB, MacNeill AJ. Net zero healthcare: a call for clinician action. BMJ. 2021;374:n1323.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradshaw K. Tackling the climate crisis – recommended learning for healthcare staff. 2022. https://telblog.hee.nhs.uk/climate-crisis.

  • Campolo A, Crary M, Shannon P. A review of the containers available for multi-dose preservative-free eye drops. Biomed J Sci Tech Res. 2022;45:36035–44.

    Google Scholar 

  • Unither Pharmaceuticals. Preservative-free multidose. 2022. https://www.unither-pharma.com/en/technologies/preservative-free-multidose-pfmd/.

  • Daehn T, Schneider A, Knobloch J, Hellwinkel OJC, Spitzer MS, Kromer R. Contamination of multi dose eyedrops in the intra and perioperative context. Sci Rep. 2021;11:20364.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsegaw A, Tsegaw A, Abula T, Assefa Y. Bacterial contamination of multi-dose eye drops at Ophthalmology Department, University of Gondar, Northwest Ethiopia. Middle East Afr J Ophthalmol. 2017;24:81–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chantra S, Hathaisaard P, Grzybowski A, Ruamviboonsuk P. Microbial contamination of multiple-dose preservative-free hospital ophthalmic preparations in a tertiary care hospital. AOPR. 2022;2:100046.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertens CJF, Gijs M, van den Biggelaar F, Nuijts R. Topical drug delivery devices: A review. Exp Eye Res. 2018;168:149–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jehangir N, Bever G, Mahmood SMJ, Moshirfar M. Comprehensive review of the literature on existing punctal plugs for the management of dry eye disease. J Ophthalmol. 2016;2016:9312340.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • mu-Drop. Micro eye drop manufacturing. 2023. https://www.mu-drop.nl.

  • Probst L, Frideres L, Cambier B, PwC Luxembourg & Sofia Solberg, Lidé S, PwC Sweden. Sustainable supply of raw materials. 2016. https://ec.europa.eu/docsroom/documents/16589/attachments/1/translations/en/renditions/native.

  • Drew VJ, Tseng C-L, Seghatchian J, Burnouf T. Reflections on dry eye syndrome treatment: therapeutic role of blood products. Front Med. 2018;5:33.

    Article 

    Google Scholar 

  • Bernabei F, Roda M, Buzzi M, Pellegrini M, Giannaccare G, Versura P. Blood-based treatments for severe dry eye disease: the need of a consensus. J Clin Med. 2019;8:1478.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradley JC, Simoni J, Bradley RH, McCartney DL, Brown SM. Time- and temperature-dependent stability of growth factor peptides in human autologous serum eye drops. Cornea. 2009;28:200–5.

    Article 
    PubMed 

    Google Scholar 

  • Fischer KR, Opitz A, Böeck M, Geerling G. Stability of serum eye drops after storage of 6 months. Cornea. 2012;31:1313–8.

    Article 
    PubMed 

    Google Scholar 

  • Sahyoun J-Y, Cloutier M, Frenette M, Robert M-C. Long-term stability of epitheliotropic factors in frozen serum eye drops. Int J Pharm Compd. 2022;26:336–41.

    PubMed 

    Google Scholar 

  • Wandel D, Bernasconi L, Egger R. PP-008 Stability and sterility of autologous serum eye-drops after long term storage. Eur J Hosp Pharm. 2017;24:A205.

    Google Scholar 

  • Tsubota K, Goto E, Fujita H, Ono M, Inoue H, Saito I, et al. Treatment of dry eye by autologous serum application in Sjögren’s syndrome. Br J Ophthalmol. 1999;83:390–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapadia W, Qin N, Zhao P, Phan C-M, Haines L, Jones L, et al. Shear-thinning and temperature-dependent viscosity relationships of contemporary ocular lubricants. Transl Vis Sci Technol. 2022;11:1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tung CI, Kottaiyan R, Koh S, Wang Q, Yoon G, Zavislan JM, et al. Noninvasive, objective, multimodal tear dynamics evaluation of 5 over-the-counter tear drops in a randomized controlled trial. Cornea. 2012;31:108–14.

    Article 
    PubMed 

    Google Scholar 

  • Arshinoff SA, Hofmann I, Nae H. Role of rheology in tears and artificial tears. J Cataract Refract Surg. 2021;47:655–61.

    Article 

    Google Scholar 

  • Grover LM, Moakes R, Rauz S. Innovations in fluid-gel eye drops for treating disease of the eye: prospects for enhancing drug retention and reducing corneal scarring. Expert Rev Ophthalmol. 2022;17:175–81.

    Article 

    Google Scholar 

  • Simmons PA, Liu H, Carlisle-Wilcox C, Vehige JG. Efficacy and safety of two new formulations of artificial tears in subjects with dry eye disease: a 3-month, multicenter, active-controlled, randomized trial. Clin Ophthalmol. 2015;9:665–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pisárčik M, Bakoš D, Čeppan M. Non-Newtonian properties of hyaluronic acid aqueous solution. Colloids Surf A Physicochem Eng Asp. 1995;97:197–202.

    Article 

    Google Scholar 

  • Shen Lee B, Kabat AG, Bacharach J, Karpecki P, Luchs J. Managing dry eye disease and facilitating realistic patient expectations: a review and appraisal of current therapies. Clin Ophthalmol. 2020;14:119–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White J “All levels of healthcare need to upskill to broaden the way that healthcare is delivered”. 2020. https://www.aop.org.uk/ot/professional-support/optical-organisations/2020/03/02/all-levels-of-healthcare-need-to-upskill-to-broaden-the-way-that-healthcare-is-delivered.

  • NHS Digital. Optometry: improving access to clinical information. 2022. https://digital.nhs.uk/services/podac/optometry.

  • Wickham L Eyecare Pathway Transformation. 2022. https://www.locsu.co.uk/wp-content/uploads/2022/10/Eyecare-Pathway-Transformation-Louisa-Wickham.pdf.

  • Cameron G, Göpfert A, Gardner T Going green: what do the public think about the NHS and climate change? 2021. https://www.health.org.uk/publications/long-reads/going-green-what-do-the-public-think-about-the-nhs-and-climate-change.

  • Source link

    credite