The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany

  • Nigst, P. R. et al. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl Acad. Sci. USA 111, 14394–14399 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benazzi, S. et al. Archaeology. The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348, 793–796 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hublin, J.-J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592, 253–257 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 5, 820–825 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mylopotamitaki, D. et al. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature https://doi.org/10.1038/s41586-023-06923-7 (2024).

    Article 

    Google Scholar 

  • Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, eabj9496 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teyssandier, N. Us and Them: How to Reconcile Archaeological and Biological Data at the Middle-to-Upper Palaeolithic Transition in Europe? J. Paleo. Archaeology 7, 1 (2024).

    Article 

    Google Scholar 

  • Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).

    Article 

    Google Scholar 

  • Staubwasser, M. et al. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl Acad. Sci. USA 115, 9116–9121 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pederzani, S. et al. Subarctic climate for the earliest Homo sapiens in Europe. Sci. Adv. 7, eabi4642 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pederzani, S. et al. Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02318-z (2024).

    Article 

    Google Scholar 

  • Smith, G. M. et al. Subsistence behavior during the Initial Upper Paleolithic in Europe: site use, dietary practice, and carnivore exploitation at Bacho Kiro Cave (Bulgaria). J. Hum. Evol. 161, 103074 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ruebens, K., McPherron, S. J. P. & Hublin, J.-J. On the local Mousterian origin of the Châtelperronian: integrating typo-technological, chronostratigraphic and contextual data. J. Hum. Evol. 86, 55–91 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Hublin, J.-J. The modern human colonization of western Eurasia: when and where? Quat. Sci. Rev. 118, 194–210 (2015).

    Article 

    Google Scholar 

  • Gaudzinski-Windheuser, S. & Niven, L. Hominin subsistence patterns during the Middle and Late Paleolithic in northwestern Europe. in The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence (Hublin, J. & Richards, M.) (Springer Dordrecht, 2009).

  • Morin, E. Reassessing Paleolithic Subsistence: The Neandertal and Modern Human Foragers of Saint-Césaire (Cambridge Univ. Press, 2012).

  • Rendu, W. et al. Subsistence strategy changes during the Middle to Upper Paleolithic transition reveals specific adaptations of human populations to their environment. Sci. Rep. 9, 15817 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morin, E. et al. New evidence of broader diets for archaic Homo populations in the northwestern Mediterranean. Sci. Adv. 5, eaav9106 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hülle, W. M. Die Ilsenhöhle Unter Burg Ranis/Thüringen. Eine Paläolithische Jägerstation (Verlag Gustav Fischer, 1977).

  • Flas, D. The Middle to Upper Paleolithic transition in Northern Europe: the Lincombian–Ranisian–Jerzmanowician and the issue of acculturation of the last Neanderthals. World Archaeol. 43, 605–627 (2011).

    Article 

    Google Scholar 

  • Demidenko, Y. E. & Skrdla, P. Lincombian–Ranisian–Jerzmanowician industry and South Moravian sites: a Homo sapiens Late Initial Upper Paleolithic with Bohunician industrial generic roots in Europe. J. Paleolit. Archaeol. 6, 17 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grayson, D. K. On the quantification of vertebrate archaeofaunas. in Advances in Archaeological Method and Theory 2, 199–237 (1979).

  • Lyman, R. L. On the variable relationship between NISP and NTAXA in bird remains and in mammal remains. J. Archaeol. Sci. 53, 291–296 (2015).

    Article 

    Google Scholar 

  • Ruebens, K. et al. Neanderthal subsistence, taphonomy and chronology at Salzgitter‐Lebenstedt (Germany): a multifaceted analysis of morphologically unidentifiable bone. J. Quat. Sci. https://doi.org/10.1002/jqs.3499 (2023).

    Article 

    Google Scholar 

  • Zavala, E. I. et al. Pleistocene sediment DNA reveals hominin and faunal turnovers at Denisova Cave. Nature 595, 399–403 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morley, M. W. et al. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai Mountains, Russia). Sci. Rep. 9, 13785 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Massilani, D. et al. Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments. Proc. Natl Acad. Sci. USA 119, e2113666118 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Doorn, N. L., Wilson, J., Hollund, H., Soressi, M. & Collins, M. J. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Commun. Mass Spectrom. 26, 2319–2327 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Stiner, M. C. Mortality analysis of Pleistocene bears and its paleoanthropological relevance. J. Hum. Evol. 34, 303–326 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stiner, M. C. Honor Among Thieves: A Zooarchaeological Study of Neanderthal Ecology (Princeton Univ. Press, 1994).

  • Drucker, D. G., Hobson, K. A., Ouellet, J.-P. & Courtois, R. Influence of forage preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer tarandus caribou) and moose (Alces alces) from Canada. Isotopes Environ. Health Stud. 46, 107–121 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kristensen, D. K., Kristensen, E., Forchhammer, M. C., Michelsen, A. & Schmidt, N. M. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool. Can. J. Zool. 89, 892–899 (2011).

    Article 
    CAS 

    Google Scholar 

  • Bocherens, H. Isotopic insights on cave bear palaeodiet. Hist. Biol. 31, 410–421 (2019).

    Article 

    Google Scholar 

  • Drucker, D. G., Bridault, A., Cupillard, C., Hujic, A. & Bocherens, H. Evolution of habitat and environment of red deer (Cervus elaphus) during the Late-glacial and early Holocene in eastern France (French Jura and the western Alps) using multi-isotope analysis (δ13C, δ15N, δ18O, δ34S) of archaeological remains. Quat. Int. 245, 268–278 (2011).

    Article 

    Google Scholar 

  • Stevens, R. E. et al. Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: palaeoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 262, 32–45 (2008).

    Article 

    Google Scholar 

  • Bocherens, H. Neanderthal dietary habits: review of the isotopic evidence. in The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence (eds Hublin, J. & Richards, M.) (Springer Dordrecht, 2009).

  • Richards, M. P. & Trinkaus, E. Out of Africa: modern human origins special feature: isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl Acad. Sci. USA 106, 16034–16039 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuzmin, Y. V., Bondarev, A. A., Kosintsev, P. A. & Zazovskaya, E. P. The Paleolithic diet of Siberia and Eastern Europe: evidence based on stable isotopes (δ13C and δ15N) in hominin and animal bone collagen. Archaeol. Anthropol. Sci. 13, 179 (2021).

  • Drucker, D. G. et al. Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe. Sci. Rep. 7, 6833 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wißing, C. et al. Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Sci. Rep. 9, 4433 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bocherens, H., Drucker, D. G., & Madelaine, S. Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: implications for early modern human palaeodiet and palaeoenvironment. J. Hum. Evol. 69, 31–43 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Fogel, M. L. Nitrogen isotope tracers of human lactation in modern and archaeological populations. In Annual Report of the Director of the Geophysical Laboratory (Carnegie Institution, 1989).

  • Fuller, B. T., Fuller, J. L., Harris, D. A. & Hedges, R. E. M. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. Am. J. Phys. Anthropol. 129, 279–293 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dusseldorp, G. L. Neanderthals and cave hyenas: co-existence, competition or conflict? in Zooarchaeology and Modern Human Origins: Human Hunting Behavior during the Later Pleistocene (eds Clark, J. L. & Speth, J. D.) 191–208 (Springer, 2013); https://doi.org/10.1007/978-94-007-6766-9_12

  • Smith, T. M. et al. Wintertime stress, nursing, and lead exposure in Neanderthal children. Sci. Adv. 4, eaau9483 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaouen, K. et al. A Neandertal dietary conundrum: insights provided by tooth enamel Zn isotopes from Gabasa, Spain. Proc. Natl Acad. Sci. USA 119, e2109315119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobi, R., Debenham, N. & Catt, J. A collection of Early Upper Palaeolithic artefacts from Beedings, near Pulborough, West Sussex, and the context of similar finds from the British Isles. in Proceedings of the Prehistoric Society 73 229–326 (Cambridge Univ. Press, 2007).

  • Flas, D. La transition du Paléolithique moyen au supérieur dans la plaine septentrionale de l’Europe. Anthropol. et Praehist. 119, 5–254 (2008).

    Google Scholar 

  • Kot, M. et al. Chronostratigraphy of Jerzmanowician. New data from Koziarnia Cave, Poland. J. Archaeol. Sci.: Rep. 38, 103014 (2021).

    Google Scholar 

  • Berto, C. et al. Environment changes during Middle to Upper Palaeolithic transition in southern Poland (Central Europe). A multiproxy approach for the MIS 3 sequence of Koziarnia Cave (Kraków-Częstochowa Upland). J. Archaeol. Sci.: Rep. 35, 102723 (2021).

    Google Scholar 

  • Mamakowa, K. & Środoń, A. On the pleniglacial flora from Nowa Huta and Quaternary deposits of the Vistula valley near Cracow. Rocz. Pol. Tow. Geol. 47, 485–511 (1977).

    Google Scholar 

  • Donahue, R. E., Blockley, S. P. E., Pollard, A. M., Vermeersch, M. & Renault-Miskovsky, J. The human occupation of the British Isles during the Upper Palaeolithic. in European Late Pleistocene Isotope Stages.

  • Ran, E. T. H. Dynamics of vegetation and environment during the Middle Pleniglacial in the Dinkel Valley (The Netherlands). Meded. Rijks Geol. Dienst 44, 141–199 (1990).

    Google Scholar 

  • Larsson, Lars. Plenty of mammoths but no humans? Scandinavia during the Middle Weichselian. in Hunters of the Golden Age. The Mid Upper Palaeolithic of Eurasia 30,000-20,000 (ed. Roedbroeks, W. and Mussi, M. and Svoboda, J. and Fennema, K.) 155–163 (INQUA, 2000).

  • Huntley, B. & Allen, J. R. M. Glacial environments III: palaeo-vegetation patterns in Last Glacial Europe. in Neanderthals and Modern Humans in the European Landscape during the Last Glaciation: Archaeological Results of the Stage 3 Project (eds. van Andel, T. H. & Davies, W.) 79–102 (McDonald Institute for Archaeological Research, 2003).

  • Uthmeier, V. T., Hetzel, E. & Heißig, K. Neandertaler im spätesten Mittelpaläolithikum Bayerns? Die Jerzmanovice- Spitzen aus der Kirchberghöhle bei Schmähingen im Nördlinger Ries. Ber. Bay. Denkm. Pfl. 59, 19–27 (2018).

    Google Scholar 

  • Thomas, J. & Jacobi, R. Glaston. Curr. Archaeol. 173, 180–184 (2001).

    Google Scholar 

  • Hussain, S. T., Weiss, M. & Nielsen, T. K. Being-with other predators: cultural negotiations of Neanderthal–carnivore relationships in Late Pleistocene Europe. J. Anthropol. Archaeol. 66, 101409 (2022).

    Article 

    Google Scholar 

  • Villa, P. & Soressi, M. Stone tools in carnivore sites: the case of Bois Roche. J. Anthropol. Res. 56, 187–215 (2000).

    Article 

    Google Scholar 

  • Martisius, N. L. et al. Initial Upper Paleolithic bone technology and personal ornaments at Bacho Kiro Cave (Bulgaria). J. Hum. Evol. 167, 103198 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Pales, L., Lambert, C. & Garcia, M.-A. Atlas Ostéologique pour Servir à l’Identification des Mammifères du Quaternaire (Editions du Centre National de la Recherche Scientifique, 1971–1981).

  • Schmid, E. Atlas of Animal Bones: For Prehistorians, Archaeologists and Quaternary Geologists (Elsevier, 1972).

  • Grayson, D. K. Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas (Academic, 1984).

  • Lee Lyman, R. Vertebrate Taphonomy (Cambridge Univ. Press, 1994).

  • Smith, G. M. A Contextual Approach to the Study of Faunal Assemblages from Lower and Middle Palaeolithic Sites in the UK (University College London, 2010).

  • Smith, G. M. Neanderthal megafaunal exploitation in Western Europe and its dietary implications: a contextual reassessment of La Cotte de St Brelade (Jersey). J. Hum. Evol. 78, 181–201 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Stiner, M. C., Kuhn, S. L., Weiner, S. & Bar-Yosef, O. Differential burning, recrystallization, and fragmentation of archaeological bone. J. Archaeol. Sci. 22, 223–237 (1995).

    Article 

    Google Scholar 

  • Fisher, J. W. Jr. Bone surface modifications in zooarchaeology. J. Archaeol. Method Theory 2, 7–68 (1995).

    Article 

    Google Scholar 

  • Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162 (1978).

    Article 

    Google Scholar 

  • Tyler Faith, J. & Lee Lyman, R. Paleozoology and Paleoenvironments: Fundamentals, Assumptions, Techniques (Cambridge Univ. Press, 2019); https://doi.org/10.1017/9781108648608

  • Reitz, E. J. & Wing, E. S. Zooarchaeology (Cambridge Univ. Press, 1999).

  • Steele, T. E. & Weaver, T. D. Refining the Quadratic Crown Height Method of age estimation: do elk teeth wear quadratically with age? J. Archaeol. Sci. 39, 2329–2334 (2012).

    Article 

    Google Scholar 

  • Steele, T. E. & Weaver, T. D. The modified triangular graph: a refined method for comparing mortality profiles in archaeological samples. J. Archaeol. Sci. 29, 317–322 (2002).

    Article 

    Google Scholar 

  • Steele, T. E. Variation in mortality profiles of red deer (Cervus elaphus) in Middle Palaeolithic assemblages from western Europe. Int. J. Osteoarchaeol. 14, 307–320 (2004).

    Article 

    Google Scholar 

  • Grant, A. The use of tooth wear as a guide to the age of domestic ungulates. in Ageing and Sexing Animal Bones from Archaeological Sites (eds. Wilson, B., Grigson, C. & Payne, S.) 109 91–108 (BAR, 1982).

  • Fernandez, P. & Legendre, S. Mortality curves for horses from the Middle Palaeolithic site of Bau de l’Aubesier (Vaucluse, France): methodological, palaeo-ethnological, and palaeo-ecological approaches. J. Archaeol. Sci. 30, 1577–1598 (2003).

    Article 

    Google Scholar 

  • Bignon, O. Approche morphométrique des dents jugales déciduales d’Equus caballus arcelini (sensu lato, Guadelli 1991): critères de détermination et estimation de l’âge d’abattage. C. R. Palevol. 5, 1005–1020 (2006).

    Article 

    Google Scholar 

  • Levine, M. A. The use of crown height measurements and eruption–wear sequences to age horse teeth. in Ageing and Sexing Animal Bones from Archaeological Sites (eds. Wilson, B. & Grigson, C.) 109 (BAR, 1982).

  • Stiner, M. C. The use of mortality patterns in archaeological studies of hominid predatory adaptations. J. Anthropol. Archaeol. 9, 305–351 (1990).

    Article 

    Google Scholar 

  • Kindler, L. Die Rolle von Raubtieren in der Einnischung und Subsistenz jungpleistozäner Neandertaler. Archäozoologie und Taphonomie der mittelpaläolithischen Fauna aus der Balver Höhle (Westfalen). Monographien des Römisch-Germanischen Zentralmuseums 99 (2012).

  • Romandini, M. et al. Bears and humans, a Neanderthal tale. Reconstructing uncommon behaviors from zooarchaeological evidence in southern Europe. J. Archaeol. Sci. 90, 71–91 (2018).

    Article 

    Google Scholar 

  • Abrams, G., Bello, S. M., Di Modica, K., Pirson, S. & Bonjean, D. When Neanderthals used cave bear (Ursus spelaeus) remains: bone retouchers from unit 5 of Scladina Cave (Belgium). Quat. Int. 326–327, 274–287 (2014).

    Article 

    Google Scholar 

  • Discamps, E. & Costamagno, S. Improving mortality profile analysis in zooarchaeology: a revised zoning for ternary diagrams. J. Archaeol. Sci. 58, 62–76 (2015).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (2020); https://www.R-project.org/

  • Posit team. RStudio: Integrated Development Environment for R (2023); http://www.posit.co/

  • Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 

    Google Scholar 

  • Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests (2023); https://CRAN.R-project.org/package=rstatix

  • Oksanen, J. et al. Vegan: Community Ecology Package (version 2.5-6) (The Comprehensive R Archive Network, 2019).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • QGIS Development Team. QGIS Geographic Information System (2009); http://qgis.osgeo.org

  • Sinet-Mathiot, V. et al. Combining ZooMS and zooarchaeology to study Late Pleistocene hominin behaviour at Fumane (Italy). Sci. Rep. 9, 12350 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruebens, K. et al. The Late Middle Palaeolithic occupation of Abri du Maras (Layer 1, Neronian, Southeast France): integrating lithic analyses, ZooMS and radiocarbon dating to reconstruct Neanderthal hunting behaviour. J. Paleolit. Archaeol. 5, 4 (2022).

    Article 

    Google Scholar 

  • Welker, F., Soressi, M., Rendu, W., Hublin, J.-J. & Collins, M. Using ZooMS to identify fragmentary bone from the Late Middle/Early Upper Palaeolithic sequence of Les Cottés, France. J. Archaeol. Sci. 54, 279–286 (2015).

    Article 

    Google Scholar 

  • Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113, 11162–11167 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, J., van Doorn, N. L. & Collins, M. J. Assessing the extent of bone degradation using glutamine deamidation in collagen. Anal. Chem. 84, 9041–9048 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rüther, P. L. et al. SPIN enables high throughput species identification of archaeological bone by proteomics. Nat. Commun. 13, 2458 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gansauge, M. T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slon, V. et al. Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to Middle Pleistocene specimens from Qesem Cave (Israel). Quat. Int. 398, 210–218 (2016).

    Article 

    Google Scholar 

  • Zavala, E. I. et al. Quantifying and reducing cross-contamination in single- and multiplex hybridization capture of ancient DNA. Mol. Ecol. Resour. 22, 2196–2207 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 1–11 (2019).

    Article 
    CAS 

    Google Scholar 

  • Talamo, S., Fewlass, H., Maria, R. & Jaouen, K. “Here we go again”: the inspection of collagen extraction protocols for 14C dating and palaeodietary analysis. Sci. Technol. Archaeol. Res. 7, 62–77 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramsey, C. B., Higham, T., Bowles, A. & Hedges, R. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46, 155–163 (2004).

    Article 
    CAS 

    Google Scholar 

  • Guiry, E. J. & Szpak, P. Quality control for modern bone collagen stable carbon and nitrogen isotope measurements. Methods Ecol. Evol. 11, 1049–1060 (2020).

    Article 

    Google Scholar 

  • Guiry, E. J. & Szpak, P. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J. Archaeol. Sci. 132, 105416 (2021).

    Article 
    CAS 

    Google Scholar 

  • van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    Article 

    Google Scholar 

  • Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aldhouse-Green, S. Paviland Cave and theRed Lady’: A Definitive Report (Western Academic and Specialist, 2000).

  • Krajcarz, M. T., Krajcarz, M., Ginter, B., Goslar, T. & Wojtal, P. Towards a chronology of the Jerzmanowician—a new series of radiocarbon dates from Nietoperzowa Cave (Poland). Archaeometry 60, 383–401 (2018).

    Article 
    CAS 

    Google Scholar 

  • Reuter, H. I., Nelson, A. & Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 21, 983–1008 (2007).

    Article 

    Google Scholar 

  • Grayson, D. K. & Delpech, F. Ungulates and the Middle-to-Upper Paleolithic transition at Grotte XVI (Dordogne, France). J. Archaeol. Sci. 30, 1633–1648 (2003).

    Article 

    Google Scholar 

  • VanPool, T. L. & Leonard, R. D. Quantitative Analysis in Archaeology (John Wiley & Sons, 2011).

  • Cooper, L. P. et al. An Early Upper Palaeolithic open-air station and Mid-Devensian hyaena den at Grange Farm, Glaston, Rutland, UK. in Proceedings of the Prehistoric Society 78, 73–93 (Cambridge Univ. Press, 2012).

  • Campbell, J. B. The Upper Palaeolithic of Britain: A Study of Man and Nature in the Late Ice Age (Clarendon, 1977).

  • Jacobi, R. M. Leaf-points and the British Early Upper Palaeolithic. In Feuilles de Pierre (ed. Kozłowski, J. K.) 271–89 (ERAUL 42, Liège, 1990).

  • Swainston, S. The lithic artefacts from Paviland. in Paviland Cave and the ‘Red Lady’: A Definitive Report (ed. Aldhouse-Green, S.) 95–113 (Western Academic and Specialist, 2000).

  • Flas, D. Jerzmanowice points from Spy and the issue of the Lincombian–Ranisian–Jermanowician. in Spu Cave: 125Years of Multidisciplinary Research at the Betche aux Rotches (Jemeppe-sur-Sambre, Province of Namur, Belgium), 1 (eds. Rougier, H. & Semal, P.) 217–231 (Anthropologica et Præhistorica, 123/2012. Brussels, Royal Belgian Institute of Natural Sciences, Royal Belgian Society of Anthropology and Praehistory & NESPOS Society, 2013).

  • Uthmeier, T., Hetzel, E. & Heißig, K. Neandertaler im spätesten Mittelpaläolithikum Bayerns? Die JerzmanoviceSpitzen aus der Kirchberghöhle bei Schmähingen im Nördlinger Ries. Bericht der Bayerischen Bodendenkmalpflege 59 (2018).

  • Source link